64 research outputs found

    Energy-Based Interference Analysis of Heterogeneous Packet Radio Networks

    Full text link

    Analysis and modeling of hydrothermal plume data acquired from the 85°E segment of the Gakkel Ridge

    Get PDF
    Author Posting. © American Geophysical Union, 2010. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 115 (2010): C06028, doi:10.1029/2009JC005776.We use data from a CTD plume-mapping campaign conducted during the Arctic Gakkel Vents (AGAVE) expedition in 2007 to constrain the nature of hydrothermal processes on the Gakkel Ridge at 85°E. Thermal and redox potential (Eh) anomalies were detected in two discrete depth intervals: 2400–2800 m (Interval 1) and 3000–3800 m (Interval 2). The spatial and temporal patterns of the signals indicate that the Interval 1 anomalies were most likely generated by a single large, high-temperature (T > 100°C) vent field located on the fault terraces that form the NE axial valley wall. In contrast, the Interval 2 anomalies appear to have been generated by up to 7 spatially distinct vent fields associated with constructional volcanic features on the floor of the axial valley, many of which may be sites of diffuse, low-temperature (T < 10°C) discharge. Numerical simulations of turbulent plumes rising in a weakly stratified Arctic Ocean water column indicate that the high-temperature field on the axial valley wall has a thermal power of ∼1.8 GW, similar to the Trans-Atlantic Geotraverse and Rainbow fields in the Atlantic Ocean, whereas the sites on the axial valley floor have values ranging from 5 to 110 MW.Thiswork was funded by the NSF Office of Polar Programs, Tellus—The Centre of Earth Systems Science at theUniversity of Gothenburg, and the Woods Hole Oceanographic Institution

    Observations and modeling of a hydrothermal plume in Yellowstone Lake

    Get PDF
    Author Posting. © American Geophysical Union, 20XX. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 46(12), (2019): 6435-6442, doi:10.1029/2019GL082523.Acoustic Doppler current profiler and conductivity‐temperature‐depth data acquired in Yellowstone Lake reveal the presence of a buoyant plume above the “Deep Hole” hydrothermal system, located southeast of Stevenson Island. Distributed venting in the ~200 × 200‐m hydrothermal field creates a plume with vertical velocities of ~10 cm/s in the mid‐water column. Salinity profiles indicate that during the period of strong summer stratification the plume rises to a neutral buoyancy horizon at ~45‐m depth, corresponding to a ~70‐m rise height, where it generates an anomaly of ~5% (−0.0014 psu) relative to background lake water. We simulate the plume with a numerical model and find that a heat flux of 28 MW reproduces the salinity and vertical velocity observations, corresponding to a mass flux of 1.4 × 103 kg/s. When observational uncertainties are considered, the heat flux could range between 20 to 50 MW.The authors thank Yellowstone National Park Fisheries and Aquatic Sciences, The Global Foundation for Ocean Exploration, and Paul Fucile for logistical support. This research was supported by the National Science Foundation grants EAR‐1516361 to R. S., EAR‐1514865 to K. L., and EAR‐1515283 to R. H. and J. F. All work in Yellowstone National Park was completed under an authorized Yellowstone research permit (YELL‐2018‐SCI‐7018). CTD and ADCP profiles reported in this paper are available through the Marine Geoscience Data System (doi:10.1594/IEDA/324713 and doi:10.1594/IEDA/324712, accessed last on 17 April 2019, respectively).2019-11-0

    The Holocene retreat dynamics and stability of Petermann Glacier in northwest Greenland

    Get PDF
    Submarine glacial landforms in fjords are imprints of the dynamic behaviour of marine-terminating glaciers and are informative about their most recent retreat phase. Here we use detailed multibeam bathymetry to map glacial landforms in Petermann Fjord and Nares Strait, northwestern Greenland. A large grounding-zone wedge (GZW) demonstrates that Petermann Glacier stabilised at the fjord mouth for a considerable time, likely buttressed by an ice shelf. This stability was followed by successive backstepping of the ice margin down the GZW’s retrograde backslope forming small retreat ridges to 680 m current depth (∼730–800 m palaeodepth). Iceberg ploughmarks occurring somewhat deeper show that thick, grounded ice persisted to these water depths before final breakup occurred. The palaeodepth limit of the recessional moraines is consistent with final collapse driven by marine ice cliff instability (MICI) with retreat to the next stable position located underneath the present Petermann ice tongue, where the seafloor is unmapped

    Canadian Arctic sea ice reconstructed from bromine in the Greenland NEEM ice core

    Get PDF
    Reconstructing the past variability of Arctic sea ice provides an essential context for recent multi-year sea ice decline, although few quantitative reconstructions cover the Holocene period prior to the earliest historical records 1,200 years ago. Photochemical recycling of bromine is observed over first-year, or seasonal, sea ice in so-called "bromine explosions" and we employ a 1-D chemistry transport model to quantify processes of bromine enrichment over first-year sea ice and depositional transport over multi-year sea ice and land ice. We report bromine enrichment in the Northwest Greenland Eemian NEEM ice core since the end of the Eemian interglacial 120,000 years ago, finding the maximum extension of first-year sea ice occurred approximately 9,000 years ago during the Holocene climate optimum, when Greenland temperatures were 2 to 3 degrees C above present values. First-year sea ice extent was lowest during the glacial stadials suggesting complete coverage of the Arctic Ocean by multi-year sea ice. These findings demonstrate a clear relationship between temperature and first-year sea ice extent in the Arctic and suggest multi-year sea ice will continue to decline as polar amplification drives Arctic temperatures beyond the 2 degrees C global average warming target of the recent COP21 Paris climate agreement

    Mechanistic insights into a hydrate contribution to the Paleocene-Eocene carbon cycle perturbation from coupled thermohydraulic simulations

    Get PDF
    During the Paleocene-Eocene Thermal Maximum (PETM), the carbon isotopic signature (δ13C) of surface carbon-bearing phases decreased abruptly by at least 2.5 to 3.0‰. This carbon isotope excursion (CIE) has been attributed to widespread methane hydrate dissociation in response to rapid ocean warming. We ran a thermohydraulic modeling code to simulate hydrate dissociation due to ocean warming for various PETM scenarios. Our results show that hydrate dissociation in response to such warming can be rapid but suggest that methane release to the ocean is modest and delayed by hundreds to thousands of years after the onset of dissociation, limiting the potential for positive feedback from emission-induced warming. In all of our simulations at least half of the dissociated hydrate methane remains beneath the seabed, suggesting that the pre-PETM hydrate inventory needed to account for all of the CIE is at least double that required for isotopic mass balance

    Explosive volcanism on the ultraslow-spreading Gakkel ridge, Arctic Ocean

    Get PDF
    Author Posting. © Nature Publishing Group, 2008. This is the author's version of the work. It is posted here by permission of Nature Publishing Group for personal use, not for redistribution. The definitive version was published in Nature 453 (2008): 1236-1238, doi:10.1038/nature07075.Roughly 60% of the Earth’s outer surface is comprised of oceanic crust formed by volcanic processes at mid-ocean ridges (MORs). Although only a small fraction of this vast volcanic terrain has been visually surveyed and/or sampled, the available evidence suggests that explosive eruptions are rare on MORs, particularly at depths below the critical point for steam (3000 m). A pyroclastic deposit has never been observed on the seafloor below 3000 m, presumably because the volatile content of mid-ocean ridge basalts is generally too low to produce the gas fractions required to fragment a magma at such high hydrostatic pressure. We employed new deep submergence technologies during an International Polar Year expedition to the Gakkel Ridge in the Arctic Basin at 85°E, to acquire the first-ever photographic images of ‘zero-age’ volcanic terrain on this remote, ice-covered MOR. Our imagery reveals that the axial valley at 4000 m water depth is blanketed with unconsolidated pyroclastic deposits, including bubble wall fragments (limu o Pele), covering a large area greater than 10 km2. At least 13.5 wt% CO2 is required to fragment magma at these depths, which is ~10x greater than the highest values measured to-date in a MOR basalt. These observations raise important questions regarding the accumulation and discharge of magmatic volatiles at ultra-slow spreading rates on the Gakkel Ridge (6- 14 mm yr-1, full-rate), and demonstrate that large-scale pyroclastic activity is possible along even the deepest portions of the global MOR volcanic system.This research was funded by the National Aeronautics and Space Administration, the National Science Foundation, and the Woods Hole Oceanographic Institution
    corecore